IR and Visible Absorption Studies on KNiBr₃ Crystals

SHANKER RAM

Advanced Centre for Materials Science, IIT Kanpur 208016, India

AND KANIK RAM

DMSRDE, P.O. Box 320, Kanpur 208013, India

Received November 12, 1987; in revised form April 25, 1988

The absorption bands caused by the phonon vibrations and the Ni²⁺($3d^8$) electronic transitions observed in KNiBr₃ single crystals have been studied. The Ni²⁺ ions in the present crystals appear to exist in a moderate octahedral coordination site [forming the Ni(Br)₆-type polyhedron] which is excited in the electronic as well as in the vibration (IR) spectrum. The electronic spectrum for some of the d-dtransitions indicates well-resolved vibronic structures, the frequencies of which are consistent with those observed in the IR spectrum. © 1988 Academic Press, Inc.

1. Introduction

The ABX_3 (X for halogen) series of compounds, where A and B respectively refer to an alkali and a divalent transition/IIA group cation, is of interest for the laser hosts and/or for studying the imperfection centers (1-4). The optical absorption and luminescence spectra of the host and/or doped Ni/Co cations in the various ABF_3 fluoride crystals have been reported in this series (2, 3). However, few studies have been carried out on the other halides. We report here the electronic $(3d^8 \rightarrow 3d^8)$ absorption spectra of possible $Ni^{2+}(d^8)$ centers in KNiBr₃ crystals. The results are discussed in the light of vibrational analysis proposed for the crystal vibration modes.

2. Experimental

The single crystals of KNiBr₃ investigated in this work were obtained from slow

0022-4596/88 \$3.00 Copyright © 1988 by Academic Press, Inc. All rights of reproduction in any form reserved.

evaporation of an aqueous solution containing KBr and NiBr₂ in stoichiometric amounts. The formation of KNiBr₃ in the solution is confirmed by X-ray diffractometry of the crystal particles (using a Rich and Seifert-Isodebyeflex 2002 diffractometer with filtered $CuK\alpha$ radiation) which indicates sharp and intense diffraction lines (Fig. 1) in the range $20^{\circ} \le 2\theta \le 50^{\circ}$. The data characteristically differ from those of NiBr₂ (5a) or KBr (5b) and KNiX₃ (X = F, Cl) halides (5c, 5d). The latter halides crystallize essentially in a hexagonal or cubic crystal system. The crystal structure of KNiBr₃ is believed to be monoclinic (space group C_{2h}^3 , Z = 2), with the Ni²⁺ cation situated at an octahedral coordination site forming the Ni(Br)6-type polyhedron. Other crystallographic details for KNiBr₃ remain to be determined.

IR spectra of the sample (ground into powder) were recorded on a Perkin-Elmer 783 spectrophotometer using a resolution of

FIG. 1. X-ray powder diffraction patterns for $KNiBr_3$.

1.2 cm⁻¹. The measurements in the near IR and visible regions (2500–400 nm) were performed with thin polished platelet samples on a Cary 2300 spectrophotometer.

3. Results and Discussion

3.1 Phonon Vibrations

The IR spectrum of the sample (shown in Fig. 2) comprises a series of band groups in the region extending from 300 to 4000 cm⁻¹. The prominent bands lying below the 1200-cm⁻¹ region could be correlated with the four expected fundamental modes, viz., ν_1 , ν_2 , ν_3 , and ν_4 for KNiBr₃ crystal in

Frequency (cm ⁻¹)	Intensity (arb. units)	Assignment	
370 ^s (a)	71		
420 (b)	Sh	$\nu_4(E)$	
400 (a')	67		
447 (b')	Sh		
470 (a) ^s	58	$\nu_2(A_1)$	
535 (b)	75		
580 (a)	94	$\nu_1(A_1)$	
620 (b)	99		
642 (a)	100		
770 (b)	95	(E)	
858 (a')	80	$\nu_3(E)$	
900 (b')	75		
992s	90	Electronic	
1125ª	100	Ni ^{2+{3} $F_4(\Gamma_3)$ } band	

TABLE I Phonon Bands (Fundamental) Observed in the IR Spectrum of KNiBf3

Note. s, sharp; Sh, shoulder bands. The modes ν_1 , ν_3 represent stretching and ν_2 , ν_4 the deformation modes in a moderate Ni(Br)₆ octahedron. The bands (corresponding to transverse and longitudinal modes) are marked by a and b, respectively.

^a Overlapping bands make placement difficult.

perovskite-type structure (6, 7). The assignments of the individual bands observed in the spectrum are given in Table I.

It is logical to compare the results with those reported for the ideal ABY_3 perovskite (cubic crystal structure) with

FIG. 2. IR spectrum of KNiBr₃ in KBr pellet. a, b, a', and b' refer to band components in ν_3 vibration mode and corresponding higher harmonic modes excited in the system. *Much intense electronic absorption because of Ni²⁺. This could be recorded by reducing the vertical (transmittance) scale by a factor of 10.

space group $P_{m 3m}(O_h^1)$ (8). The frequencies assigned for ν_1 and ν_3 vibrations in the present work are reasonably high and show a larger number of band components than expected even after the triplet degeneracy of T_{1u} and T_{2u} modes (cf. Table II) is lifted. One perspective is that the perovskite structure is probably distorted in KNiBr₃ crystals. The relationship involves a tetragonal distortion of the perovskite unit cell, together with a transition from an octahedral Ni(Br)₆ unit to tetrahedral Ni(Br)₄ by the shortening of Ni-Br bonds. In this model the above vibrations would present large frequencies in the tetrahedral scheme, and the prominent IR intensities observed even in the case of highly symmetric vibrations are very likely. A correlation diagram summarizing the various vibration species and their selection rules in the two crystal systems is given in Table II.

The assignment proposed for the various fundamental vibration modes of KNiBr₃ in Table I seems consistent with the X-ray diffraction analysis, which reveals a possible monoclinic structure (space group C_{2h}^3 , and Z = 2) for the system at room temperature (295 K). All four fundamental vibrations of KNiBr₃ may be allowed in IR under the approximation of this crystal system and for the nickel cation forming a moderately distorted [Ni(Br)₆ type] polyhedron in

Correlation Diagrams ^a				
Vibration mode	$\frac{\text{KNiBr}_3}{C_{2h}^3}$	Perovskite $ABY_3 (8)^b$ O_h		
ν_1, ν_2, T_z	$A_g(\mathbf{R}), A_u(\mathbf{I})$	$\rightarrow T_{1u}(\mathbf{I})$		
R _z	$A_g(\mathbf{R})$			
$\nu_3, \nu_4(\mathbf{R}_x, \mathbf{R}_y)$	$E_g(\mathbf{R}), E_u(\mathbf{I})$	\longrightarrow $T_{2u}(ia)$		

TABLE II

^a R, Raman active; I, infrared active; ia, inactive.

^b There is no Raman active mode.

the crystal unit cell as expected for the nickel bromide (5a, 9).

The site group symmetry for $Ni(Br)_6$ polyhedron in KNiBr₃ crystal is not known and therefore, with the data available at present, it is not possible to carry out a factor group analysis for the various vibrations. Also factor group splitting could not be resolved because a sharp band structure was lacking in the present spectrum. Moreover, all four fundamental vibrations are split into transverse and longitudinal components: TO/LO splitting (10). As a result, the number of bands in the spectrum is doubled by this TO/LO splitting. The corresponding bands are marked a and b, respectively, in Table I. The $E(\nu_3 \text{ and } \nu_4)$ modes are further split into two distinct components by removal of the doublet degeneracy.

A sharp band observed at 992 cm^{-1} (Fig. 2) along with the broadband features centered at ~ 1125 cm⁻¹ is believed to arise in $3d^{8}(Ni^{2+})$ electronic transitions excited to the crystal field splitant level (Γ_3) of the ground state multiplet ${}^{3}F_{4}$ (11, 12). The extension of the band features into the highfrequency side indicates mixing of the transition with lattice vibrations (not studied in the present work), thus resulting in the vibronic bands associated with the latter.

The band series showing unresolved triplet structures centered around 850, 1700, and 2250 cm^{-1} (cf. Fig. 2) have similar band profiles. The frequencies in those bands empirically follow the series $n\nu_3$, with $\nu_3 =$ 850 cm⁻¹ and $n = 1 \rightarrow 3$. The intensity decreases successively in the series, confirming that the latter is due to the higher harmonics of v_3 vibration. Similar harmonic bands have also been reported with measurable intensities up to n = 4 in BaBiO₃ perovskite (13).

3.2 Optical Transitions

The absorption spectrum of KNiBr₃ is shown in Fig. 3. The positions and intensi-

FIG. 3. Optical absorption spectrum of a KNiBr₃ crystal. The actual absorption in the region 800-400 nm is 10 times that shown on the vertical axis.

ties of the prominent bands together with the transitions assigned are summarized in Table III. The spectrum contains a group of characteristically broadbands which arise from the transitions within $3d^8(Ni^{2+})$ configuration.

The Ni²⁺ exhibits a series of $d \leftrightarrow d$ transitions occurring in the near IR to UV regions

(14). The transitions within these levels are in principle forbidden in the absorption. They usually appear, however, because of a coupling with the lattice vibrations. The resulting spectrum is very sensitive to coordination number, symmetry, and crystal field at the ion site offered by the nearest neighbors in the crystal. Absorption bands

Band position		Separation from		· · /	
λ (nm)	ν (cm ⁻¹)	$\Delta \nu \ (cm^{-1})$	Assignment (transitions ${}^{3}A_{2} \rightarrow {}^{3}F, {}^{1}D, {}^{3}P$)		
3075	3252			${}^{3}F_{4}(\Gamma_{4})$	
2450	4082	0	(0,0) band		
2243	4458	376	$+ \nu'_4$ (a)	${}^{3}T_{2}\{{}^{3}F_{3}(\Gamma_{5})\}$	
2164	4620	539	$+ v_2'$ (b)		
1905	5249	0	(0,0) band		
1875	5333	84	?	$^{3}T_{2}\{F_{3}(\Gamma_{2})\}$	
1770	5650	401	$+ \nu'_4 (a')$		
1570	6369	0	(0,0) band	377 (3F7 (F))	
1440	6944	575	$+ \nu'_{1}(a)$	$-1_{1}(-r_{4}(1_{1}))$	
1290	7752			${}^{3}T_{1}\{{}^{3}F_{3}(\Gamma_{4})\}$	
940	10638			3T.(1D.(T.) 3F.(T.))	
810	12345			$I_{1} D_{2} (I_{3}), I_{2} (I_{5}))$	
693	14430	0	(0,0) band	1 <i>F1</i> 3 <i>F.(</i> (T .))	
664	15060	630	+ ν'_1 (b)	$L_{12(13)}$	
579	17271			$^{1}T_{2}\{^{1}D_{2}(\Gamma_{5})\}$	
554	18050				
500	20000			${}^{3}T_{1}\{{}^{3}P_{1,2}(\Gamma_{3,5,4})\}$	
457	21882			· · · · ·	

TABLE III Zero Phonon Lines and Associated Vibronic Transitions Observed in the Optical Absorption Spectrum of KNiBf3 Crystal

Note. ν_1' , ν_2' , etc., refer to the vibrations (Table I) associated with the excited electronic state.

FIG. 4. Schematic splitting diagram of the Ni²⁺(d^8) levels adopted to the observed transitions for KNiBr₃ in moderate octahedral crystalline fields. Free ion energy values (cm⁻¹) and notations are taken from Ref. (12). The transition corresponding to ${}^{3}A_{2}(\Gamma_{1}) \rightarrow {}^{3}P_{0}$ level (shown by dotted line) was not observed in the present investigation.

corresponding to Ni²⁺ cations at both octahedral and tetrahedral coordination sites have been reported (9, 11, 12, 14, 15). Thus similar to the results for Ni X_2 (9, 15) and KNi X_3 (other than X = Br) (12) halides, the spectrum of KNiBr₃ observed in the present investigation can be ascribed to the d-d transitions of Ni²⁺ in a moderate octahedral coordination.

The transitions from ground state ${}^{3}A_{2}(\Gamma_{1})$ to the various levels of ground $({}^{3}F_{3,2})$ and excited state $({}^{3}P, {}^{1}D)$ multiplets are usually excited (cf. the assignments in Table III). The broad absorption with subsidiary maxima and satellite bands ranging from 8000 to 4000 cm⁻¹ and below is assigned to transitions arising from the ${}^{3}F$ ground state multiplet. In Fig. 4 we show the various Ni²⁺ electronic energy levels as deduced from the observed absorption corresponding to zero phonon lines. The ${}^{3}F$ multiplet is split into two triplets $({}^{3}T_{1} \text{ and } {}^{3}T_{2})$ and a singlet $({}^{3}A_{2})$ because of crystalline field effects. The ${}^{3}A_{2}(\Gamma_{1})$ is the lowest energy level (ground state) for the Ni²⁺ ions in an octahedral coordination site. It remains singlet even after the spin-orbit coupling. Also, the ligand field splitting of ${}^{3}F$ multiplet ($\Delta \sim$ 4100 cm^{-1}) is comparable with the spin-orbit splitting (\sim 3250 cm⁻¹). In fact, a complicated splitting pattern of the ground state multiplet can be anticipated. Obviously, the zero phonon lines in the transitions originating from ${}^{3}A_{2}$ (e.g., cf. the bands at 4300 and 7000 cm^{-1}) are identified by the relatively sharper band edge on the lower energy side of the absorption maxima. These are further accompanied by several vibronic bands in the higher energy side, indicating that the transitions are allowed by vibration coupling. The vibrational structure, however, is obscured in most cases because of Jahn-Teller distortions in the degenerate states.

Some of the assignments of Ni²⁺ transitions indicated in Table III are still being discussed in the literature. For example, a transition ${}^{3}A_{2} \rightarrow {}^{1}D_{2}(\Gamma_{3})$ is not reported to appear in the spectrum of KNiF₃ (12). De-Kock and Gruen (15) have assigned it to a sharp band at ~11500 cm⁻¹ in NiCl₂. We agree with this assignment and accordingly have correlated a weak band observed at ~10638 cm⁻¹ in KNiBr₃ to this transition. The comparatively diffuse band feature shown in the present case indicates a reasonably lower symmetry for the Ni²⁺ cations in KNiBr₃ crystal lattice.

A more interesting observation is that the electronic transitions of Ni²⁺ (except ${}^{3}A_{2} \rightarrow$ ${}^{3}T_{1}{}^{1}D_{2}(\Gamma_{3})$) in KNiBr₃ comprise the considerably smaller energy values compared to those reported for KNiF₃ crystals (12). The latter crystallizes in a cubic crystal structure with Ni²⁺ located at the octahedral coordination site (O_{h} symmetry). Moreover, most of the transitions of KNiBr₃ correspond very closely in transition energies to those observed for NiBr₂ (hexagonal crystal system) crystal. The coordination polyhedron of NiBr₂ is a distorted octahedron (9). The Ni(Br)₆ octahedron is more likely to be distorted in KNiBr₃ crystal, with a transition from the octahedral coordination site toward the tetrahedral site. The Ni²⁺ electronic levels could comprise the smaller energy values for the latter (14).

From the splitting patterns observed for the ³F multiplet we assigned a speculative crystal field parameter value $\Delta = 4100$ cm⁻¹ to the nickel ion in an octahedral site. The value found in the present case is appreciably smaller than 6800 cm⁻¹ reported for KNiF₃ crystals (2, 12) and shows good agreement with the value ~4500 cm⁻¹ proposed by DeKock and Gruen for NiCl₂ (15). This appears in accordance with the electronegative character of the F, Cl, and Br anions. Fluorine, being highly electronegative, could offer a stronger ligand field (larger Δ value) on the Ni²⁺ cations sites in the system.

The strongest absorption for the spectrum of KNiBr₃ is observed between 18,000 and 22,000 cm⁻¹. It frequently occurs in the nickel systems because of the transition of a 3*d* electron on the molecular orbital of the Ni(Br)₆ polyhedron unit, corresponding to a transfer of charge from the central ion to the ligands (12, 14).

References

1. W. A. SIBLEY AND N. KOUMVAKALIS, *Phys. Rev.* B 14, 35 (1976).

- 2. A. T. ABDALIAN AND P. MOCH, J. Appl. Phys. 49, 2189 (1978).
- 3. A. T. ABDALIAN, J. CIBERT, AND P. MOCH, J. Phys. C 13, 5587 (1980).
- 4. J. DANKO, D. PACHECO, AND B. DIBARTOLO, J. Luminesc. 28, 27 (1983).
- 5. JCPDS File Nos. (a) 24.789, (b) 4.531, (c) 21.1002, and (d) 4.85.
- Y. KHAN, K. NAHM, M. ROSENBERG, AND H. WILINER, Phys. Status Solidi A 39, 79 (1977).
- 7. A. VISTE AND D. E. IRISH, Canad. J. Chem. 55, 3218 (1977).
- W. G. FATELEY, F. R. DOLLISH, N. T. MC-DEVITT, AND F. F. BENTLEY, "Infrared and Raman Selection Rules for Molecular and Lattice Vibrations: The Correlation Method," Wiley-Interscience, New York (1972).
- 9. VAN A. LUDI AND W. FEITKNECHT, Helv. Chim. Acta. 46, 2226 (1963).
- G. TURREL, "Infrared and Raman Spectra of Crystals," p. 176, Academic Press, New York/ London (1972).
- 11. E. I. ZOROATSKAYA, B. Z. MALKIN, A. L. STOLOV, AND ZH. S. YAKOVLEVA, Sov. Phys. (Solid State) 10, 255 (1968).
- 12. J. FERGUSON, H. J. GUGGENHEIM, AND D. L. WOOD, J. Chem. Phys. 40, 822 (1964).
- 13. S. TAJIMA, S. UCHIDA, A. MASAKI, H. TAKAGI, K. KITAZAWA, AND S. TANAKA, *Phys. Rev. B* 35, 696 (1987).
- 14. G. ROUSSOS AND H. J. SCHULZ, Phys. Status Solidi B 100, 577 (1980).
- C. W. DEKOCK AND D. M. GRUEN, J. Chem. Phys. 44, 4387 (1966).